有研究表明,病毒可用于组装电池、肿瘤检测,
一颗普通电池丢弃后,可以污染?60?万升的水。在各类电池中,锂离子电池因储能高、重量轻、污染小等特点一骑绝尘,被广泛应用于手机、电动车、军事装备及航空航天等。
但高效、便携、环保始终是电池应用领域的追求。麻省理工学院的生物分子材料学教授安吉拉·贝尔彻(Angela?Belcher)已成功用病毒组装了电池的正负极,并成功为?LED?灯、手电筒、激光笔等小型设备供电。
与普通的电池相比,病毒电池仅需要病毒、水以及电极材料就可以供电,不仅环保、降低了成本,在一定程度上,这种电池比传统的电池相比,具有更高的容量、循环寿命和充电率。除此之外,安吉拉也将病毒改造用于转移性肿瘤检测,协助外科医生进行切除。
改进的病毒电池可用于驱动汽车(图片来源:MIT NEWS)
“病毒电池”?的诞生
用病毒组装电池这一想法源于鲍鱼。读博期间,安吉拉就注意到了这种拥有坚硬外壳的生物,研究后发现,鲍鱼分泌的一种蛋白质能够迫使碳酸钙分子定向排列,形成鲍鱼坚硬的外壳。既然是蛋白质形成的外壳,那么它也是一种纳米级材料,作为一名材料学家,安吉拉敏锐的意识到可以改造病毒表达相似的蛋白质,从而为人类制造有用的材料。
在分析了数百万种病毒之后,安吉拉及其团队确定了?M13?噬菌体,这种病毒遗传物质简单,易于操作,还可以将机械能转换为电能用于发电。“尽管不是唯一可用于纳米工程的病毒,但它的效果非常好”,安吉拉表示。M13?是一种结构细长的病毒,这种结构正好可以用作生物支架。
对?M13?的基因组进行改造后,病毒的表面会生成特定的蛋白质,这种蛋白质能够吸附电极材料。当对病毒基因组进行不同的工程突变时,生成的蛋白质能够吸附不同的材料。安吉拉改造的病毒表达的蛋白质能够吸附氧化钴和磷酸铁,分别担任电池的正极和负极。
传统的锂离子电池是一种充电电池,这种电池使用锂化合物作为电极材料,常用的正极材料包括锂铁磷酸盐、锰酸锂等,常用的负极材料是石墨,当锂离子通过电解质从负极流向正极时,电池便会发电。
病毒电池在本质上也是一种锂离子电池,但其所用的电解质是水,与锂离子电池相比,病毒电池使用生物材料,更易降解,而且,它们的合成需要相对较少的设备,因此也更加便宜。同时,这种病毒经过改造后,只会感染特定的细菌,且不会对人体致命。
“使用病毒等生物材料的好处是,它们已经以纳米形式存在,它们是用于合成电池材料的天然模板”,约翰?霍普金斯大学应用物理实验室的高级电池研究科学家?Konstantinos?Gerasopoulos?表示。纳米电极能够更多、更快地吸收和释放带电离子,因而可以将电池做的更小、更轻且容量更大。
纳米电池是目前的研发热点,将电池正极和负极的材料纳米化后,能够降低电池材料的体积、提高电池密度,从而提升电池的容量,如果加入导电性良好的碳纤维,也可以提升电池的充放电性能。
产量和效能是商业化障碍
早在?2009?年,安吉拉就在白宫为前美国总统奥巴马展示了这种病毒电池,当时,奥巴马正好计划拨款?20?亿美元用于新型电池的技术的开发。
安吉拉抓住了这一机遇。在?10?多年的发展中,安吉拉改造的病毒已经能够结合?150?种材料,应用到了太阳能电池、肿瘤检测灯方面。但不得不注意的是,目前,安吉拉改造的病毒电池仅能为?LED?灯、手电筒、激光笔等小型设备供电。
一般的电池工厂所需的原材料高达数十吨,但是病毒体积太小,以目前的生物分子技术很难实现这种规模的量产。也就是说,病毒电池暂时没办法商业化,对此,安吉拉解释道,“与成熟的锂离子制造商竞争是毫无意义的,我们并不会与当前的技术竞争,最重要的是,我们想要用生物学技术解决一些迄今为止尚未解决的问题”。
在安吉拉成功拿到病毒电池的同年,美国康奈尔大学的研究者发现了碳纳米管太阳能电池,碳纳米管是由碳原子无隙结合形成的一种纳米级的圆柱状物体,这种材料的太阳能电池导电性好、比传统的硅材料便宜,但是转换效率非常低,仅有?1%。
2011?年,安吉拉及其团队在此基础上,用?M13?病毒将碳纳米管太阳能电池的转换效率提升了近?30%。M13?病毒生成的特定蛋白质能够固定碳纳米管,从而保证纳米管处于正确的位置;同时,M13?还会产生二氧化钛,能够提高电子的传输效率;此外,M13?能够让碳纳米管具有水溶性,使其在室温条件下更方便地加入到太阳能板中,从而降低成产生本。
文章来源:《肿瘤》 网址: http://www.zlzzs.cn/zonghexinwen/2021/0301/817.html